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Mutual Coupling Between Parallel-Plate W aveguides

Y. E. ELMOAZZEN, STUDENT MEMBER, IEEE, AND LOTFOLLAH SHAFAI, MEMBER, IEEE

Abstract—The radiation field and mutual coupling between two
identical parallel-plate waveguides having the same axis of sym-
metry are investigated. Jones’ method of formulation is applied and
a modified Wiener~Hopf equation is obtained. Expressions for the
radiated field in free space, refiected field in the exciting waveguide,
and transmitted field in the coupled waveguide are obtained and the
reflected and transmitted fields are expressed in terms of waveguide
modes. The reflection coefficient for each mode is represented by
three terms, two of which are due to reflections at the open end of
the exciting waveguide and are constant along the waveguide. The
third term is the contribution from the field scattered by the open
end of the coupled waveguide and decays along the waveguide ac-
cording to the radiation condition. Similarly, the transmission co-
efficient of each mode is represented by three terms, two of which
decay along the coupled waveguide and the third one is constant,
The radiation field is also divided into three terms. One of them is
due to the radiation from the open end of the exciting waveguide and
the other two are the contribution of multiple interactions between
the two waveguides.

Computed results for the reflection and transmission coefficients
and the radiation field are shown for TE,, excitation and various
separation distance of the waveguides. The results for the reflection
and transmission coefficients are oscillating functions of period ,
and approach gradually the well-known final values of a single ex-
cited waveguide.

I. INTRODUCTION

ECENTLY, open-ended waveguide structures have re-
R ceived considerable attention due to their importance
as radiating elements [1]-[3] or microwave measure-
ment devices [4]. The previous analytical investigation of
these structures is mostly based on the equivalent static ap-
proach [5] and the ray theory of diffraction [6]. The equiva-
lent static approach has been used to study various wave-
guide geometries. But its applicability is limited to the wave-
length range, where the higher order diffraction fields can not
propagate. Similarly, the ray theory of diffraction has been
used to study similar problems, in particular the mutual cou-
pling between parallel-plate waveguides [7] and horn an-
tennas [8]. I'ts application is also limited to certain waveguide
geometries due to difficulties in including whole rays.

For problems concerning symmetrical geometries, an al-
ternative method based on the Wiener—Hopf technique is usu-
ally used to solve the resculting symmetrical boundary value
problems. This paper considers the boundary value problems
concerning two parallel-plate waveguides, having the same
width and axis of symmetry. Thus field equations are utilized
to derive a modified Wiener—Hopf equation, similar to that of
[9]-{12]. The final results are expressed in terms of an integral
extending from zero to infinity, but suitable for numerical
integration [13] using a Gauss-Laguerre quadrature formula
[14].

In order to reduce the solution to that of ray theory of dif-
fraction, the integral in the final expressions is approximated
by expanding the transformed Green’s function G(a) in a
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power series and retaining the first term only. Consequently,
the results after integration are in terms of a series convergent
for [(ka)?/kL] <1, where @ and L are the width and separa-
tion distance of waveguides and k is the propagation constant
of free space. This is the same condition which Kashyab and
Hamid [12] have used in investigating the diffraction char-
acteristics of a similar geometry. The final solutions, both
rigorous and that obtained by the ray theory of diffraction in
conjunction with the modified diffraction coefficient of Lee
[15] and [16], are divided into three terms. The first term
represents the solution due to the exciting waveguide alone,
while the second and third terms are the contribution of mul-
tiple diffractions between the exciting and coupled wave-
guides.

II. FORMULATION OF THE PROBLEM

Consider two infinitely thin and perfectly conducting
parallel-plate waveguides, having width 2¢ and separated by a
distance L, located in free space as shown in Fig. 1. With a
time factor ¢!, an incident field consisting of a TEy,; mode is
assumed to be propagating in the (exciting) waveguide along
the positive z direction, in the form

lrx
y = ¢%(x,2) = cos <——> e, [=1,3,5--- (1)
2a

where ;= [(Ir/2a)?~k?]*/2 and k=F+ik, is the propaga-
tion consistant in free space. The resulting total EM fields
may be found from ¢*=¢*+¢, where ¢ is the scattered field
and satisfies a two-dimensional wave equation and should be
solved subject to the appropriate boundary and edge condi-
tions [17]. Using Jones’ method of formulation [9], the fol-
lowing modified Wiener—-Hopf equation of second type [18],
[19] is obtained.

J_(a) + ei2lT (@) + ®y(a, a)/G(a)

il — ele—vDL
- (._ 1)(l—l>/2

— < k. 2
2a+/ 2= ( T‘ @

R

a + iv

The unknown ®:(e, «) is a finite-range transform
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L
&i(a, a) = ﬁj; o(x, z)e™* dz (3)

where a=o¢-+4r is the Fourier transform variable, and
G(a) =cosh ya/va exp (ya) is the transformed Green's func-
tion associated with the Wiener-Hopf equation. J,(a) and
J_(c) are unknown and are analytic in the upper (7> —ks)
and lower (7 <ks) halves of the « plane, respectively. It can be
shown that ®,(a, «) satisfies [19].

®:(a, @) = 3G(a)[¢"E{S(—a) — D(—a)}
— {S(@ + D@}l @

where
S(a) _ iml b/
D@}ﬂu@+he@—57§en<”

1 eIl
[+
atiy; a—1iy;

These functions satisfy the following integral equation:

il Gy (iv1)
Ya2n (=1)u=nr ;—_‘_1—7; + G_(a) E()
_ _Lf”‘“ G(B)E(B)e*- a8,
2wV _ia B+«
—k < —d<r<d <k (6)
where
Ba= o ™
D(a), A= —1

and G, (@) is the “plus part” of G(a) (Gla) =G4(a)G_(a)) and
is given by [19]

Gi(a) = G(—a)

cos ka
— ei(wl4)ez(aa/1r)[1—C'+1n(27r/ka)+'£(1r/2)]

P+«

hd a
cgitalm @ik ] (1 + __> ¢iasinm) (g)

n=1,3,6,-- Yn

where C=0.57721 - - + is Euler’s constant, and

w2 11/2
= [ ]
K [(Za>

A solution of the integral equation (6) together with (4) gives
$,(a, a) and hence ®(x, @) can be determined. The final solu-
tion of ¢{x, 3) can be found by an inverse Fourier transform.
To determine E(w) one notes that the right-hand side of (6) is
of the form

o [T G0

—o0—1d [24

eﬂ:ﬁL dﬁ

_ f ©=ud g cosh ya e 1 E(B)e L p ©
va(B + a)G_(8)

—wo—1d

where E{a) denotes S{a) or D(a). For large L, the major con-
tribution for the integral is from the integral over a small
neighborhood around the branch point 8= —% [18]. The
contour of integration may then be deformed in the lower half
of the 8 plane, as shown in Fig. 2, An expansion of G_(8) and
E(B) in a Taylor series about the branch point 8= —% and
retaining the first term only gives

E(—Fk) cosh ya
~q
G(—k)J, Ya

e—iﬁL
e dg
B+«

(10)

where p=p,+ p2+ps. The integral over the small circle p, may
be shown to be zero which reduces (9) to

E(—F)
I=¢——T(o) (11
G_(—F)
where
—k—i®  cosh? ya
T{a) = Zf —— ¢BL B, (12)
—k va(B + «)
Letting 3= —k— (tu/L) in the above equation gives
2L
T(a) = —~ gL
a
a -
. cosh? [—i \/2ikL-u — u{l
et du (13)

NELu = 743[” +EL <% — 1)]

which for a given value of @ may be computed numerically
using the Gauss—Laguerre quadrature formula. Substituting
(11) into (6) one obtains

—rl G4 (iv1)
S(a) = (= @vp VTV
@ Za\/27r( ) (o 4 v G-(@)
o SR T
271 G+(k) G—(a)
—ixl G(ivy)
o) = (=G Y
Die) 2a+/27 (=1 (e + iv1)G-(a)
_i D(—k) T(x) . (14b)

2ri G (k) G_(a)

Using these equations ®;(a, o) in (4) can be expressed in terms
of S(—k) and D(—k), which are known from (14a) and (14b)
by letting @ = — k. Thus one finds

iml
®1(a, a) = —— (—1) DG, (
(e, @) 20\/%( ) + (i)

. { G (a) B a/2mi
a+ iy (v — k)1 — F3)G2(R)

{Frwxam>+zx—max—@aﬂ& (15)
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where
—a T(—Fk)
= : (16)
27 G+2(k)

This completes the solution of the modified Wiener—Hopf
equation. '

II1. EVALUATION OF THE SCATTERED FIELD
A. Radiation Field
In the region outside the waveguides, the scattered electric
field is given by

o041
®1(a, a)er@ o~z do

—oot1T

1
¢'(x, 2) = \/—ﬂ

| 7] <k (17)

which by a saddle-point method of integration for the far-zone
field (kp>>1) gives

i (ko (a4 :
¢(p, 6) = —— & sin 6@, (a, k cos B)e—the siné  (18)
Vkp

where p and 9 are polar coordinates defined in Fig. 1. Replacing
for ®(a, k cos 8) from (15), the above equation becomes

¢*(p, 6)
_ Gy (k cos ) NEa FT(k cos 6)G,(k cos 6)
=/(e, 0) [k cos 41y, ( > (1 —F?) (iy1— k) G, 2(B)
B < a ) T(—Fkcos )G {(—kcosb)

271

eich co8 8] ‘ (19)

2mi)  (1—=F3)(ivi— k)G (k)
where
flp, 0) = i (=) VPG (iv)k
2a+/2nkp

-sin fetke—ka sin 9—1r/4)'

(20)

The radiation field in (19) consists of three terms. The first
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Contour of integration for the first and second
terms of ®i(a, ) in (21).

term is the well-known radiation field from the open end of a
waveguide (in the absence of the coupled waveguide), where-
as the second and third terms are the radiation fields due to
the interactions between the two waveguides. More specifi-
cally, the second term gives the radiation from the open end
of the exciting waveguide due to interaction with the coupled
waveguide, with the third term being the radiation from the
open end of the coupled waveguide due to interaction with
the exciting waveguide.

B. Reflected Field
In the exciting waveguide (2<0), the reflected electric
field is given by

-4

bl = =

cosh va
| 7| <k (21)

—eo-1iT

For the first two terms of ®;(a, ), the contour of integra-
tion may be closed in the upper half of the complex a plane,
as shown in Fig. 3. The only singularities so enclosed are the
poles at @ =iYm, Ym=+/(m=r/2a)—k2, where m=1, 3,5, -+ -
Thus one finds by the residue theorem, from the first term,

0

) m
¢=(x,5) = 2,  Rimcos <—2—1i x) e (22)
a

m=1,3,5,+--
with
Ir? G (7)) G+ (iYm
Ripm= — M (_1)<z+m>/27f_i(ﬂf)_i£l_) (23)
4a® ’Ym('Ym + 'Yl)

and from the second term,

. i mn
br. @)™, 2) = D,  Riyacos <—— x) e (24)
m=1,3,5,+-- 2a

with

mG‘+(4xy ) G1(ivm) T (i)
yuliv, — R)G2(R)

()
2mi/) 1 — F?

il 2
Ry, = i’ (—1) Um 2
: 43

(25)
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The remaining term in ®;(a, a) contributes

—al G (ivy)
int = —1(—=1Y0-D/j2 __ "~
Pr, @) (x7 Z) ( 4d> ( 1) G+2(k)

(/2ri) —
.(m sy f_w+iTT(~a)G+(—a)

cosh yx -
— g% (I=2) do

cosh ya

7] <k  (26)

which may be expressed in a model series of the form

[~
br ™, 2) = D

m=1,8,6,-+-

mr
Ri.»n®(2) cos (— x) 27)
20

Equating these equations, the orthogonality on x gives

im (—1)m /2 Gy (i)

4a® G2(k) @y — B)(1 — F?)
07 —

.<_a_>f T( 0[) COSh e e—'ya-l-ia(L——z) dC\!.

271/ J _ptir YG (@) (0 + ¥n?)

In this equation, the contour of integration is closed in the
upper half-plane. The only singularity so enclosed is the
branch point at a=/% which may be shown to give

Gy (iv1)
G2(k) (ivs — B)(1 — F?)

< a >f°°+"°° T(— @) cosh? ygeiatl—2) p
| — o
271/ J va-G(a) - (a® + vn?)
Since no analytical solution of this integral is known, it is
modified by a change of variable to a more suitable form for

numerical integration using the Gauss—Laguerre quadrature
formula. The final form is

—iwlm
Rl,m(2)(z) =

(28)

—iwlm

2q2

Rin®(2) = (—1) t+mr /2

(29)

wlm
Rin®(e) = (= 1) G2
2a

G (iv)e =2 (_)
G )i (1= F)

a
cosh? [
L—z

27

R W,
\/Zik(L——z)u—uz]

IR =S u—t G+(k—|— m )
L—z

T<_k[1+ k(LMi—zSD :'s.
: d

; e ¥du.
52 [1+_W_]2+ .
k(L—3) e !

Thus the reflected electric field is in the form

(30)

¢T(x7 Z) = ¢Texc(x, Z) + ¢, (1)int(x7 Z) + ¢, (2>iut(x, Z)

= Y [(Rim+ Rin®)ems + Ry ®(3)]

m=1,3,6,+++

mr
-Cos <—~ x)
2a

(31)
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where Ry m, Ri»®, and Ry, ? (z) are the reflection coefficients
given, respectively, by (23), (25), and (30).

Again, the reflected field is expressed by three terms. The
first term gives the reflected field due to the open end of the
exciting waveguide in the absence of the coupled waveguide.
The remaining two terms are due to interactions. The second
term is the contribution of the field scattered at the open end
of the exciting waveguide when illuminated by the scattered
field of the coupled waveguide, and the third term is due to
the scattered field of the coupled waveguide, in the absence of
exciting waveguide, when illuminated by the scattered field
of the exciting waveguide. The reflection coefficients of this
latter term thus represent a continuous spectrum of inhomo-
geneous plane waves which decay with 2 being zero atz= — «
according to the Sommerfeld radiation condition. It should be
noted that for large values of L or 2, the integral in (26) can be
evaluated by the saddle-point method, to give the required
contribution. The above method, however, is adopted to
enable one to evaluate the resulting field for any given value
of z, in particular the aperture field at z=0. Because of this
attenuating nature of the last term, the reflected field at large
distances from the opening is due to only R;,, and R,V

C. Transmitted Field

In the coupled waveguide (2> L), the transmitted electric-
field component is given by

b0 = )+ [ty 0) T iang

X, %) = "%, 2 — a, e—taz ,

‘ V2rJ _ppir nb @ cosh va *
| 7] < ks (32)

The integral may be evaluated by closing the contour in
the lower half-plane. The first term of ®1(a, &) has a pole at
a= —14y; and a branch point at a«= —%. The contribution of
the pole cancels the incident field exactly and the branch point
contribution can be evaluated similar to ¢, (2"*(x, z). The re-
sult may be shown to be

¢teXt(x7 Z) = Z

m=1,3,5,"-

T:1.x(2) cos <% x) (33)

where

wim .
T1m(z) = Eyn (1) Utm) 2tk (4y;)

e ____
cosh? [— \/ 2ikzu — u{l
2

o
4

_ i
\2ikzu — u? G- (——k - ——)
6*16

' i\ ? i
[k2 (1 + ——) + 7m2:| [—-k -—+ iw:l
k2 3

Similarly, for the second term of ®,(a, o), the only enclosed
singularity is the branch point @= —%, and hence

(34)

0

¢,y (x, ) = 2

m=1,8,8,- -

mw
T1.m™P(2) cos <— ) (35)
2a

where
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FG(iv1)
(1 — F*)(iv1 — k)G X(k)

(1) (Z) = __,i_ ( 1) (I+m) [2gikz
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(25)

a _.__
cosh? l:— /2ikzu — uz] -T (—
3

1%
-2
4

f - - e du. (36)
0 o AN i
V 2ikzu — u’ l:k2 (1 + ——> + 'Ym{l G_<-—k - -—)
k2 F
For the third term of ®(a, ), the enclosed singularities are  where
the poles at o= —#ym, with vm=+/(mx/2a)?—k? where wo—id ( 2ya)r L
m=1,3,5, - - - . Evaluating these residue contributions, one Tu(a) = __f Y 48 1)
obtains o—id YO n' B+ a
. - mm .
d® = > Tia®cos|— x) ¢ Ym? (37) with
me=1,3,5, - - - 2a
where {1, forn =20
2 . . €n =
Ty n® = _l_( N MG (071) G (1Y) T(iv,) 2, form=0.
4a® (1 — F?)(iv: — k)G, (k)
In the neighborhood of 8= —&, the function (8— k)™ 1)/2
{ @ vmL (38) is regular and smooth, and can be replaced by (—2k)®—1/z,
21 ) Therefore (41), after deforming the contour, becomes
(___ 1)n2n+1an—1(2k) (n—1)/2p—i(n—1) (x/2)
—k—i 8L
Tola) = € 1) f (8 + k)b s, n=0,246,--- (42a)
0 - B+ a
n=12375---. {42b)
Hence the transmitted electric field is given by
: . = mr
¢u(x, 2) = (x, )+, 1) (%, 2) Fdr, 00w, 2) = D [Trm(@)+Tim® (@) +T1n®e ] cos 20 (39)
m=1,3,b a

where Ty (2), T1,»V(z), and T1,® are the transmission co-
efficients given, respectively, by (34), (36), and (38).

A change of variable via 8= —k— (su/L) gives the follow-
ing:

(__ 1)n+12[(3n+1) /21 (ka)"‘le“”/“) (n—1) gib L

To(e) =

en- 1l (BL) (=D 2

Again Ty, and T,V (z) are expressed in convenient
forms for numerical integration and may be computed using
a Gauss—Laguerre quadrature formula to determine the aper-
ture field. Furthermore they represent, respectively, the con-
tribution of incident and scattered fields of coupled waveguide
when scattered by the open end of the exciting waveguide.
Thus they are decaying fields with z in accordance with the
radiation condition. At large distances from the opening, the
only transmission coefficient is T, ® which is due to the
interaction between the two waveguides.

{V. REDUCTION OF THE SOLUTION TO THAT OF
RAY THEORY OF DIFFRACTION

If the Green’s function G(«) is expanded in a power series,
then the function T'(a) can be written as

T(a) = ‘Z“, Tu(a) (40)

W28, n=0,2,4,6,-"- (43)
where
£ = — iL(k — ) (44)
and
% gipu
Wi—am(§) = fo s Edu. (45)

The above function is related to the Whittaker function
Wim(£) by the relation

Wi =TG+1)

£
‘exp <E> VW o) gy, G (). (46)

Using the asymptotic expansion of Wi ,(£), [20], in (43), one

obtains
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(_ 1)n+12[(3n+1) /2] (ka)n—le'i(wl'i) (n—-l)elkL
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n+1\1

T.(a) =

n— 1
4

n—1
4

(

e nl- (RL) D12

) -5 IIC

“(
) -(

)

2 /¢

.{Hg

Now retaining the first term in (47), its substitution into (40)
gives

o0

—in/2 gL (xID]

T(a) = T.(a) = —
(=) n=0,§,"' avkRL (k — @)
o — 1) 2)3n/2( b g)nei (nri®) 1
§ @
7=0,2,4, - - - en-nl(kL)"? 2
— dmigikl—I1
B aN/2wkL (& — a)

2
-[l-i—iv—vz——girﬁ—l—---] (48)
where v = (ka)?/kL.
It is clear that for the convergence of T'(a), » must be less
than unity, i.e., (ka)*<<kL. Thus retaining the first term, (48)
reduces to

— 270\ eilkL—(ri8)] 1
@) = 1) = () e
Lislarge. (49)
Finally, this equation together with (16) gives
etk L—(x]4)] 1
(50)

Foo
2k\/27kL  G,2(k)

which is the same as F obtained in the next section.

A substitution of (49) and (50) into the expressions of the
radiated, reflected, and transmitted fields gives the solutions
which can be obtained using the ray theory of diffraction in
conjunction with the modified diffraction coefficient [15],
[16]. The details of the latter approach are shown in Section
V. However, as Ty(a) yields the solution using ray theory of
diffraction, the higher order terms of T'(a) provide the correc-
tion when (ka)?/kL is not small enough.

V. AprPLICATION OF RAY THEORY OF DIFFRACTION

S. W. Lee [15], [16] has introduced a modified diffraction
coefficient for problems involving two or more parallel plates,
which takes care of coupling along a shadow boundary. To
apply the method to the present problem with an excitation of
TEy,; mode and ! odd, one utilizes the symmetry of the
geometry with respect to z axis and introduces an infinitely
large magnetic wall at the center of the waveguides, as shown
in Fig. 4(a). The incident field is then a plane wave illumi-
nating the upper edge of the exciting waveguide at an angle
¢1, where sin ¢;=Ir/2ka. The resulting diffracted, reflected,
and transmitted waves, then can be found by an application
of the above modified diffraction coefficient.

A. Diffraction Patterns

Diffraction patterns consist of the diffraction due to the
exciting waveguide alone and the multiple diffractions be-
tween plates 1 and 2, which may be considered separately as
follows.

n-+7 2:| |:<n—— 1)2 <n+4s— 1)2:’
)]G : l )
slgs ) ‘
P
| g 2, I ;
T e 1875,
L} magnetic wall » AL 5
(a) (b)
P
| 9.0 8

{c}

Fig. 4. Geometries for the application of the ray theory of diffraction.

1) Diffraction Due to the Open End of the Exciting Wave-
guide [ Fig. 4(6)]: The field ¢1(p, ) on the ray diffracted at the
edge of upper plate is given by

il rI0] . _
é1(p, 0) = TV D@,60)E;f, 6=m—0 (51)
where
1
Ejf = 3 (=1 (52)

at the upper edge, and 6 is the direction of the incident plane
wave. p and § are the coordinates of the observation point with
respect to the upper edge and the factor D (8, 6p) is the modified
diffraction coefficient in the form

. o 0
—21 COS — €08 —

D@, 60) = cos 0o+ cos? J(6)1(60) (53)
with
JG}(—k cos #), %r< IOI <7
1@ = .
l[ﬁ+(k cos )1, Kl <3 (54)

the function Gy, used in [15] and [16], is related to G, of the
present paper by

Gila) = V2a + k) e @06 (a).
Thus for ¢1(p, ) one obtains

G+ (k cos ¢;)G(k cos 0)] . (56)

(55)

1
—(—1)@Di2

gilko—(xI9)] |:

\ 2nkp 2
l: 2k sin ¢; sin 6
cos ¢; + cos 6

¢1<P, 0) =



ELMOAZZEN AND SHAFAI: COUPLING BETWEEN PARALLEL-PLATE WAVEGUIDES 831

Replacing % sin ¢; by in/2a and k cos ¢; =147y, in the above ex-
pression, it becomes

imleilbo— /9]

T (— 1) 012G i)

,0) =
¢1(p, 6) Yo/ 2nks

G, (k cos 6)
-ksin ————-
k cos 0 + iy,

Note that, for 8 <(w/2), the specular reflection at the mag-
netic wall requires the multiplication of the results by a factor
of [14e?*a sing] which when combined by [G.(k cos 8)]
gives G(—#k cos 6). Thus for the range 0 <f <= one can use a
single expression f(8) =G,.(—k cos 8) which gives the (57) for
¢1(p, 8) valid for 0 <8 <.

2) Multiple Diffraction Between Two Waveguides: There are
two kinds of multiply-diffracted rays as shown in Table I with
the integer # being at least unity. Now consider the fields due
to rays of type

(57)

(4) = 2 FFCeVF,

n=1

(58)

where F; is the diffraction field at edge 2 due to the initial dif-
fraction of the incident plane wave at edge 1. F is the diffrac-
tion field at edge 1 or 2 with a plane wave of unit amplitude
incident with angle zero at edge 2 or 1, respectively. Fy, is the
diffraction field, at the observation point, due to the final dif-
fraction at edge 1 of an incident plane wave having a unit
amplitude. Equation (58) can be written in the form
—— = —— F
¢2,4(p, ) = FiFy, 2 FOV = F.Fy, [
n=1 -

(59)

where F;, F, and Ffl are given by

. ei[kL—(r/ll)] _
Fi=———— D@, —(r — ¢))E,
2rkL ( (7" ¢l)) ]

—al ikL—(n]4)]

(—1)@D0 _ G (iv1)
24 V2rkL  Go(k)(iyi — k)
ik L—(r[4)] il L—(r [4)] 1
VIrkL 2/ 20kl GL2(E)
gilep— (/9]
v 2rkp
—qgrlho—(7ID)] G.(k cos 6)
Vrkp Gt
A substitution of (60) and (62) into (59) gives
il — 1) D2
2a+/27kp
Gy (ivi)-ksing
(v — RG2(R)

i L—(r )] 1
[ V2wxkL k(1 — cos 0)].

Similarly, fields due to rays of type B equal

(60)

D(0,0) = (61)

D@, 0)

sin 8

(62)

1 — cosé

¢ilko—(x/8)

¢2,A(p7 0) =

1—F?

G (k cos 6)

(63)

o0
Z Fiﬁ(2n~2)F”eikL cos 6
n=1

with distances measured from edge 1 or

TABLE 1
Type Initaial Number of Diffraction at Final
Diffraction each edge Diffraction
at at
1 2
A 1 n+ 1 n 1
B 1 n n 2
0) = Fillpy e gh o 4
= . ! cos
¢2,B(P, ) 2 le — er (6 )
where F, and F are given by (60) and (61) and F;Z is
F —igtl= @Dl ging G (—Fkcosb) 63)
fo = T
: V2rkp 14 cosé G4 (k)

Again a substitution of (60) and (65) into (64) gives

iml(—1) D12

 2av/20kl
Gy (iy;)-ksing

(1 — BG(B)
SR/ H)] 1

' [ VIrkL k(1 + cos)

Thus the total diffracted field with distances measured at
origin x=0 and 2=0, is given by

¢°(p, 0) = [b1(p, 0) + ¢2,4(p, 0) + ¢2,5(p, ) ]eteoin .

gilko—(m/8)]

¢‘2,B(pa 0) = 1 — F2

G.(—Fkcosb)

] eikL cos 0' (66)

(67)

B. Fields Inside the Exciting Waveguide

Again, the reflected field consists of the diffraction due to
the exciting waveguide and the multiple diffraction between
the two waveguides. However, the diffracted rays are now
converted into modes inside the exciting waveguide. The re-
flection due to the open end of exciting waveguide is, Fig. 4(c),

o

¢T,1(x7 Z) = E

m=1,3,5+..

cos <’—;‘—’i ) D[~ (x — gu), —(r — b1)]

a

[2i(—1) -]

[ray to mode conversion factor]E, (68)

where the first bracket is to normalize the amplitude of the
rays traveling in the — (r —¢,,) direction at x=d, 2=0, for an
incident plane wave of unit amplitude at the above point.
The second bracket is the ray to mode conversion factor given

by [15]
(ee]).....

1

B 2ka cos ¢>;

conversion factor =

(69)

and E,* is given by (52). Equation (68), after some manipula-
tions becomes

0

¢T,1<x7 Z) = E

m—1,3,5,---

mw
R cos (——— x) erm? (70)
2a
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with
i (—1)wtm 2 MG (i) G (1) .
443 Yu(¥m + v1)

le=

B

(71)
Similarly, the reflection due to rays of type 4 is shown as

¢T,2YA(x7 Z) = Z [21(—1) (m—l)lQ] cos (_75_7: >

m=1,3,5,+ - - a

F __
pYmZ | — .
‘ 1—F2 Fify,

[ray to mode conversion factor]

(72)

where F, F,, and Ffl are given, respectively, by (61), (60), and
(62) with 6 being replaced by ¢ and (e**/4)/(\/2zkp)
being dropped in (63). Hence one finds

d mr
boate) =5 R con(Ba)om (9
m=1,3,5, - 2a
with
]2 . .
Ry @ = il (—1)Gme mG Gy ) G (1Ym)
, 4a? Yu(tyve — k)G 2(k)
F GBI~ /4))]
(74)

1 — F2 \20kL (b — iym)

The field due to rays of type B is a radiated field and
has the same form as (66) with cos #=~1. This field can be
converted into a model series to give Ry,®(z) similar to
R, P (2). This is due to the fact that the result obtained here
is the same as that of (26) obtained by an application of the
saddle-point method of integration in conjunction with the
asymptotic form of T(—a).

C. Fields Inside the Coupled Waveguide

The transmitted fields in the coupled waveguide also con-
sist of diffracted fields due to exciting waveguide and multiple
diffraction between the two waveguides, Fig. 4(d). Here the
diffraction due to exciting waveguide and rays of type A are
scattering type and give transmission coefficients which are a
function of z and can be treated similar to rays of type B in
Section V-B. The remaining contribution comes from rays of
type B which may be shown to be

©

¢1,2,8(x, 2) = E

m=1,8,6,++"

mm F,'Fh
-cos|{—xle v (z—IL) _
2a 1— F?

[ray to mode conversion factor]

[2i(— 1) b1

(75)

which could again be modified to

Oi,0.8(x,2) = E Tym® (’7;1 ) e e (76)

m=1,3,5,+ a
with
—iln? (1)t mG . (iv1) Gy (iym)erm "
403 Ym(ive — B)GL2(R)(1 — F?)
[ GikLn/8)

/2akL (b — m)] (77

Tim® =
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Fig. 6. Reflection coefficients of the TEq,1 mode for d/A=0.6.

VI. RESULTS AND DISCUSSIONS

Some results are obtained for a waveguide size 2¢/A=0.6
and TEg, excitation. The resulting infinite integrals are com-
puted by a Gauss—Laguerre quadrature formula with 15 in-
tervals. Fig. 5 shows the radiation patterns for kL =35, 10, and
50, which are normalized to the maximum power radiation at
kL =350. Since the radiation patterns are symmetric with re-
spect to the waveguide geometry, only the patterns for
0 <0 <180° are presented. As expected, with decreasing kL,
the direction of the radiation main lobe moves progressively
away from the forward direction and the back-lobe level in-
creases. The amount of radiated power, however, should be
an oscillating function of kL similar to the reflection and
transmission fields discussed below.

The reflection coefficients for modes 1 and 3 are shown in
Fig. 6. Since R, ,,¥(z) decays with g and does not contribute
to the reflected field at large distances from the opening, its
corresponding terms were not included in computations. The
amplitude and phase of the reflection coefficients are oscillat-
ing functions of period = and decay continuously to reach the
final values for kL=, a single excited waveguide. Fig. 7
shows the transmission coefficient (coupling to coupled wave-
guide) for the first mode, which is again an oscillating function
decaying to zero as kL approaches infinity. This transmission
coefficient is again computed by neglecting the corresponding
terms for scattered fields which vanish at large distances from
the opening. The total reflection and transmission terms at the
open ends of two waveguides are also computed and are shown
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exciting waveguide for an exciting TEy,; mode with d/A=0.6.

separately for modes 1, 3, and 5 in Figs. 8 and 9. These results
show the relative magnitude of each mode at the open ends
and may be used to find the resulting aperture fields.

Since similar analytic or experimental results were not lo-
cated elsewhere in the literature, no comparison is possible at
the present time. However, the behavior of the results are as
expected. The analysis in this paper was carried out for a
TE,,; excitation with / odd. The extension to TEy,; with /
even and TMy,; with even or odd / is trivial and can be carried
out with the proper Green’s functions. The method can also
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waveguide for an exiciting TEg.1 mode with d/A=0.6,

be extended to waveguides with different widths as well as
coupling between waveguide arrays.
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