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Mutual Coupling Between Parallel-Plate Wave8uides

y. E. ELMOAZZEN, STUDENT MEMBER, IEEE, AND LOTFOLLAH SHAFAI, MEMBER, IEEE

Absfracf—The radiation field and mutual coupling between two
identical parallel-plate waveguides having the same axis of sym-
metry are investigated. Jones> method of formulation is applied and

a modified Wiener-Hopf equation is obtained. Expressions for the

radiated field in free space, reflected field in the exciting waveguide,

and transmitted field in the coupled waveguide are obtained and the
reflected and transmitted fields are expressed in terms of waveguide

modes. The reflection coefficient for each mode is represented by

three terms, two of which are due to reflections at the open end of
the exciting waveguide and are constant along the waveguide. The
third term is the contribution from the field scattered by the open
end of the coupled waveguide and decays along the waveguide ac-
cording to the radiation condition. Similarly, the transmission co-
efficient of each mode is represented by three terms, two of which
decay along the coupled waveguide and the third one is constant.

The radiation field is also divided into three terms. One of them is

due to the radiation from the open end of the exciting waveguide and
the other two are the contribution of multiple interactions between

the two waveguides.

Computed results for the reflection and transmission coefficients

and the radiation field are shown for TEo, I excitation and various

separation distance of the waveguides. The results for the reflection
and transmission coefficients are oscillating functions of period m,

and approach gradually the well-known final values of a single ex-
cited wavegnide.

I. INTRODUCTION

R

ECENTLY, open-ended waveguide structures have re-

ceived considerable attention due to their importance

as radiating elements [I ]– [3 ] or microwave measure-

ment devices [4]. The previous analytical investigation of

these structures is mostly based on the equivalent static ap-

proach [5] and the ray theory of diffraction [6]. The equiva.

lent static approach has been used to study various wave-

guide geometries. But its applicability is limited to the wave.

length range, where the higher order diffraction fields can not

propagate. Similarly, the ray theory of diffraction has been

used to study similar problems, in particular the mutual cou-

pling between parallel-plate waveguides [7] and horn an-

tennas [8]. Its application is also limited to certain waveguide

geometries due to difficulties in including whole rays.

For problems concerning symmetrical geometries, an al-

ternative method based on the Wiener-Hopf technique is usu-

ally used to solve the resulting symmetrical boundary value

problems. This paper considers the boundary value problems

concerning two parallel-plate waveguides, having the same

width and axis of symmetry. Thus field equations are utilized

to derive a modified Wiener-Hopf equation, similar to that of

[9]- [12 ]. The final results are expressed in terms of an integral

extending from zero to infinity, but suitable for numerical

integration [13] using a Gauss–Laguerre quadrature formula

[14].

In order to reduce the solution to that of ray theory of dif-

fraction, the integral in the final expressions is approximated

by expanding the transformed Green’s function G(a) in a
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Fig. 1. Geometry of tbe problem.

power series and retaining the first term only, Consequently,

the results after integration are in terms of a series convergent

for [(lza) Z/hL ] <1, where a and L are the width and separa-

tion distance of waveguides and k is the propagation constant

of free space. This is the same condition which Kashyab and

Hamid [12] have used in investigating the diffraction char-

acteristics of a similar geometry. The final solutions, both

rigorous and that obtained by the ray theory of diffraction in

conjunction with the modified diffraction coefficient of Lee

[15] and [16], are divided into three terms, The first term

represents the solution due to the exciting waveguide alone,

while the second and third terms are the contribution of mul-

tiple diffractions between the exciting and coupled wave-

guides.

11. FORMULATION OF THE PROBLEM

Consider two infinitely thin and perfectly conducting

parallel-plate waveguides, having width 2a and separated by a

distance L, located in free space as shown in Fig. 1. Ilrith a

time factor e–’wf, an incident field consisting of a TEO, Z mode is

assumed to be propagating in the (exciting) waveguicle along

the positive z direction, in the form

h%()E.’ =@i(x, z) = cos ~- e–yl’, 1 =1,3,5$.. (1)

where ~Z = [(lw/2a)2—k2]1/9 and k = kl+z’kz is the propaga-

tion consistent in free space. The resulting total Ehl fields

may be found from ~t = @i+@, where @ is the scattered field

and satisfies a two-dimensional wave equation and should be

solved subject to the appropriate boundary and edge condi-

tions [17]. Using Jones’ method of formulation [9], the fol-

lowing modified Wiener-Hopf equation of second type [18],

[19] is obtained.

.T_(a) + e~aLJ+(a) + @i(a, a)/G(a)

The unknown @l(a, a) is a finite-range transform
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IL
Ih(u, a) =—

s
c+(z, z) eiaz dz (3)

~% ,

where cx=u+i~ is the Fourier transform variable, and

G(cr)=coshya/~a exp (~a) is the transformed Green’s func-

tion associated with the Wiener–Hopf equation. I+(a) and

~–(a) are unknown and are analytic in the upper (~>–k,)

and lower (r<kj) halves of thea plane, respectively. It can be

shown that @l(a, a) satisfies [19].

@l(a, a) = ~G(a) [e’a~{~(–a) – ~(–a) }

- {s(a) + D(a)} 1 (4)

where

s(a)

}

id
= J–(a) T J+(–a) – fi~z (– 1)(~–1)/2

D(a)

[

1 e–r ~L

“—T— 1 (5)

~ + i71 a! — i-r’l

These functions satisfy the following integral equation:

A

s

‘–id G+(@) E(/3)e-i~L
. ——

2~i –m_~d
~+a dfl,

–k, <–d<r<d <k, (6)

where

{

s(a), A=l
E(a) =

D(a), A=–1
(7)

and G+(a) is the “plus part” of G(a) (G(a) = G+(a) G–(a)) and

is given by [19]

G+(a) == G_(–a)

dcos ka
. ei(m/4)ez(aa/r) [1–C+ln(2r/ka)+ i(~/2)]

k+a

where C= O.57721 . . . is Euler’s constant, and

‘“n=[Hz-k’]’”
A solution of the integral equation (6) together with (4) gives

@l(a, a) and hence @(x, a) can be determined. The final solu-

tion of +(x, z) can be found by an inverse Fourier transform.

To determine 13(a) one notes that the right-hand side of (6) is

of the form

-s

~–,d a Cosh ya. e–~aE(@)e–@L
— d~ (9)

—c. -icl 74P + ~)G-(@

where 13(a) denotes ~(a) or ~(a). For large L, the major con-

tribution for the integral is from the integral over a small

neighborhood around the branch point /3= — k [18]. The

contour of integration may then be deformed in the lower half

of the fl plane, as shown in Fig. 2. An expansion of G_(/3) and

E(p) in a Taylor series about the branch point /3= – k and

retaining the first term only gives

E(–k)

s

cosh ~a e—@L

I~a e–ya — do

G-(–k) ,
(lo)

-ya ,8+a!

where P = P1+Pz+I%. The integral over the small circle z%may
be shown to be zero which reduces (9) to

E(–k)
I=a

G_(–k) ‘(a)
(11)

where

s

–k–ire cosh= -ya
T(a) = 2 —— e–i19L @ (12)

–k ~a(~ + a) “

Letting ~ = – k – (iu/L) in the above equation gives

T(a) = ‘L– eikL
a

[
cosh’ — ~2ikL . U — U’

“J

m 1
0~2’’L”u-~[u+’kL(:-l)l ‘-”’u’13)

which for a given value of a may be computed numerically

using the Gauss–Laguerre quadrature formula. Substituting

(11) into (6) one obtains

—id
s(a) = -T (– 1)(1-1)/2

G+(i7t)

(CY+ iw)G_(cY)

a S(–k) T(a)
+——–— (14a)

27ri G+(k) G_(a)

—id
D(a) =

G+(iw)
== (– 1) (z-l)/2

(a+ i-YJG-(a)

rz D(–k) T(a)
—— — . (14b)

27ri G+(k) G_(a)

Using these equations @l(a, a) in (4) can be expressed in terms

of .S(-k) and ~(–k), which are known from (14a) and (14b)

by letting a = –k. Thus one finds

‘iirl
@l(a, a) = —- (– l)fZ–’)/2G+(i~1)

2a427r

“{

G+(a) a/27ri

a + i~, – (i-y, – k)(l – F2)G+~

)

. [FT(a)G+(a) + T(–a)G+(–a)ei”L] (15)
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Fig. 2. Corrtour fortheintegral linthe @plane,

where

–a T(–k)
F=——. (16)

27ri G+’(k)

This completes the solution of the modified Wiener-Hopf

equation.

III. EVALUATION OF THE SCATTERED FIELD

A. Radiation Field

In the region outside the waveguides, the scattered electric

field is given by

1

s

CO+i?

@(z, z) = —— @l(u, ~)e7(~–fi)-~az da,

~27r _.+i,

ITI <k (17)

which by a saddle-point method of integration for the far-zone

field (Lp >>1) gives

ei(kP–(T/4))

@(p, e) = ——— k sin 6@1(u, k cos O)e–ik” ‘in 0 (18)
~kp

where p and 0 are polar coordinates defined in Fig. 1. Replacing

for @l(a, k cos 0) from (15), the above equation becomes

@(P, O

[

G+(k COS @ a FT(k cos O)G+(k cos 0)
=.f(P, ‘9)

()

——

k Cos O+i-fl 27ri (1 – F’) (iyl– k) G+2(k)

()a T(–k cos O) G+(–k COS6)
—— eak L cos 0

27ri (1–F’)(iT,–k)G+2 (k) 1 (19)

where

i?rl
f(P, o = ~aJm (– 1) (’-’2G+(iTt)k)k

- sin Oe’’ko-ka ‘in ‘-ml’). (20)

Ima

a

I Complex a-plme

Fig. 3. Contour of integration for the first and second
terms of @I(a, a) in (21).

term is the well-known radiation field from the open end of a

waveguide (in the absence of the coupled waveguide), where-

as the second and third terms are the radiation fields due to

the interactions between the two waveguides, More specifi-

cally, the second term gives the radiation from the open end

of the exciting waveguide due to interaction with the coupled

waveguide, with the third term being the radiation from the

open end of the coupled waveguide due to interaction with

the exciting waveguide.

B. RejZected Field

In the exciting waveguide (z <O), the reflected electric

field is given by

1

s

M+ir Cosh ~x
@r(z, z) = = @l(u, a) e–iuz da,

42rr -W+i, cosh -ya

For the first two terms of @l(a, a), the contour of integra-

tion may be closed in the upper half of the complex a plane,

as shown in Fig. 3. The only singularities so enclosed are the

poles at a=iy~, y~= <(mr/2a)2–k2, where m= 1, 3, 5, . . . .

Thus one finds by the residue theorem, from the first term,

()rj,exc(;, z) = ~ Rt,m cos %-x e~mz (22)
?n=l,3,5, . . .

with

llr2
Rt,m = – ~a; (– l)(z+~)/2

mG+(iw) G+(iwn)
(23)

7m(’Y?n+ 72)

and from the second term,

()d~,mint(% z) = ~ Rt,~(’J cos :-x e’m’ (24)
?E= 1,3,6,...

with

illrz
RZ,mfl) = -i (– l)(z+mJ/2

wzG+(i-yz) G+(hn)
T(i~J

~m(iv, – h) G+Z(k)

“()a F
—— — I (25)
2ri 1 – F~The radiation field in (19) consists of three terms. The first
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Theremaining term in @l(a, a) contributes

()—il
+r,(,)in’(z,z) = —-~a (-p’G+(i7’)

G+’(k)

(a/27ri)

s

m+i7
T(–a)G+(–a)

“(iyl – l?)(l –P) -02+,,

cosh 7x
.—— ~~.(hz) da

> 1~1 <k, (26)
cosh ~a

which may be expressed in a model series of the form

()C#U-,(Vin’(% Z)= ~ &n(2)(Z)COS ;X . (27)
?n=l,3,5, . . .

Equating these equations, the orthogonality on xgives

— Mm
R1,~f2J(z) = ~3_ (_ 1)(1+.)/2

G+(iyl)

G+2(k)(iw – k)(l – F’)

( u

a ‘+iT T(–a)cosh~a
.—

27ri
e-~a+’a(~-z)da. (28)

-w+,, yG+(a)(c12 + vn’)

In this equation, the contour of integration is closed in the

upper half-plane. The only singularity so enclosed is the

branch point ata=k which may be shown to give

—hlm
R,,~t2j(z) = ~ (_ 1)(1+.)/2

G+(iT,)

G+’(k) (i~l – k) (1 – F’)

‘( )sa ‘+;m T(—et) cosh’ ~aei”(&’)
—. da. (29)
2Ti * ~a ~G+(a). (a’ -1- y~’)

Since no analytical solution of this integral is known, it is

modified by a change of variable to a more suitable form for

numerical integration using the Gauss–Laguerre quadrature

formula. The final form is

7rlm
Ri,m@)(z) =;a; (– 1) (~+~)/’

G+(i~z)ei~(~–Z)

(H

a

G+’(k) (i~z~k)(l –F2) 27ri

\
cosh’

[
~z /2ik(L–z)u– u’

r“ 1
.1
Jo

(“)~2ik(L–z)u–u2 G+ k+~

.’(-4’+$s1)~~—~–u;U,
[ ‘h1

2

k2 1+
+-r?n’ ,

k(L–z)

Thus the reflected electric field is in the form

+,($, z) = @r’x’(x,z) + 4,, (,)WX, z) + (j,, (,)i=’’(x, z)

= s [(&,~+ ~t,~(’))e’mz +RL~(2)(Z)]
m=l,3 ,5,...

(30)

()m7r
. Cos —- x

2a
(31)

where Rj ~, RZ ~(1), and Rl,m(’j (z) are the reflection coefficients

given, re~pect~vely, by (23), (25), and (30).

Again, the reflected field is expressed by three terms. The

first term gives the reflected field due to the open end of the

exciting waveguide in the absence of the coupled waveguide.

The remaining two terms are due to interactions. The second

term is the contribution of the field scattered at the open end

of the exciting waveguide when illuminated by the scattered

field of the coupled waveguide, and the third term is due to

the scattered field of the coupled waveguide, in the absence of

exciting waveguide, when illuminated by the scattered field

of the exciting waveguide. The reflection coefficients of this

latter term thus represent a continuous spectrum of inhomo-

geneous plane waves which decay with z being zero at z = — co

according to the Sommerfeld radiation condition. It should be

noted that for large values of L or z, the integral in (26) can be

evaluated by the saddle-point method, to give the required

contribution. The above method, however, is adopted to

enable one to evaluate the resulting field for any given value

of z, in particular the aperture field at z = O. Because of this

attenuating nature of the last term, the reflected field at large

distances from the opening is due to only Rc,m and Rz,m(l).

C. Transmitted Field

In the coupled waveguide (z> L), the transmitted electric-

field component is given by

m-%

+t(%z) = &($2,z) + & s cosh ‘YX

@l(a, a)
42r -w+~,

e–iaz da,

cosh Ta

II- I < k’. (32)

The integral may be evaluated by closing the contour in

the lower half-plane. The first term of @l(a, a) has a pole at

a = —iyz and a branch point at a = — k. The contribution of

the pole cancels the incident field exactly and the branch point

contribution can be evaluated similar to @r,(z) ‘ni(x, z). The re-

sult may be shown to be

()fj,ex’(x, z’) = ~ ‘l,~(z) COS ;% (33)
rn=l,3,5, . . .

where

irlm
T1,~(z) = ~ (– 1) (Z+m)/2eik”G+(i~1)

[
cosh’ : @kzu – U2

“s

m
z 1—

0 ~2ikzu – U’ G_
(-k-:)

“[k’(l+a’+’m’1[-~-: +’”1 ‘“”’34)
similarly, for the second term of @,(a, a), the only enclosed

singularity is the branch point a = — k, and hence

()@t, (I)in’(Z, Z) = ~ ‘t,m(’)(z) COS ; X (35)
m=l ,3,5,. . .

where
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TZ,m(l)(Z) =~~ (—l)(z+~)lze~~g
FG+(i-yJ ()a(l– F’)(iyz–k)G+2~ IT;

[
cosh’ ~42ikzu–u2

“s

WJ l“T(-k-:)
i( kJ2+’.21G-(-@e-ud””(3’)0~2ikzu–u2 k’ 1+2

For the third term of @l(a, a), the enclosed singularities are where

the poles at a= —i~%, with ~~=~(mr/2a)Z—kz, where

m=l,3,5, . . . . Evaluating these residue contributions, one
‘-” (– 2ya)n e-i@L

Tn(a) = 1 J —d~ (41)
obtains en _@-id van! p+a

()~~,mi”t = ~ Tt,~c2J cos ; x e-~mg (37) with
Tn=l,3,5, . .

where (1, forw=O

iw
Tt,m(’) = ~ (–– 1) (J+m)/2

mG+(i~z) G+(iyJ en =

— T(iy.) 1 2, for M # O.

ytn(l – F2) (i~t – k) G+2(k)

()

In the neighborhood of (3= – k, the function ((3 – k) @-lJlz
a

.— e~mL. (38)
is regular and smooth, and can be replaced by ( — 2k) (“-1)/2.

2Ti Therefore (41), after deforming the contour, becomes

I
(– l)mzn+la~-l(z~) (n-l) /Ze-i(n-l) (Ir/2)

s

–& j~

T@ =
e–@L

c~.n! @ + k) (~-1)/! — d~, n = 0,2, 4,6,... ,(42a)

o
–k B+a

n=l,3,5, . . . . l(42b)

Hence the transmitted electric field is given by

du(% z) =@text(*,z)+f#Jt,(1)%%, z) ++,, (,)in’(x, z) = s [Tt.m(Z)+TLtn(l) (Z)+TLrn ‘2)e-~~Z] cos ~~x) (39)

where TL,m(Z), Tz,~(l) (z), and Tt,~(2) are the transmission co- A change of variable via@= – k – (iz~/L) gives the follow-

efficients given, respectively, by (34), (36), and (38). ing:

TJcY) =
(- l)~+12[t8*+lJ/21 (ka)~-lei(~14)(n-l) eik~

- J’v(fi_2) /2(9, n = 0,2,4, 6,...
en-n!. (kL) (n–l) 12

(43)

Again Tt,m and Tz,n(l) (z) are expressed in convenient where

forms for numerical integration and may be computed using

a Gauss–Laguerre quadrature formula to determine the aper-
~=–iL(k? -a) (44)

ture field. Furthermore they represent, respectively, the con- and
tribution of incident and scattered fields of coupled waveguide

when scattered by the open end of the exciting waveguide. J
wUie–tl

Thus they are decaying fields with z in accordance with the
wj_(,,2)(~) = —— du. (45)

u+~
radiation condition. At large distances from the opening, the

o

only transmission coefficient is Tt,n(2) which is due to the The above function is related to the Whittaker function

interaction between the two waveguides. W~,~($) by the relation

IV. REDUCTION OF THE SOLUTION TO THAT OF

RAY THEORY OF DIFFRACTION
wj_(l,2)(~) = r(j + 1)

If the Green’s function G(a) is expanded in a power series,

then the function T(a) can be written as
oex ()P : $( ’-’J ~’(1-2)/2) (,+1), (j/2)(t). (46)

T(a) = ~ T.(a)
n=o,l,2, . .

(40) :;::::he asymptotic expansion of ~~,m($), [201,in (43), one
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(– l)n+lg I(3n+l)/21 (~a)n-lei(r/4) (n-I)eWL

T.(cx) =
()

n+l 1
r—

en .n! . (~~) (~–1)/2 2 i

Now retaining the first term in (47), its substitution into (40)

gives

[
. l+; V–V2–; W+... 1 (48)

where v = (ka) 2/kL.

It is clear that for the convergence of T(a), v must be less

than unity, i.e., (ka) ‘<<kL. Thus retaining the first term, (48)

reduces to

T(a) =

Finally,

()—27ri eiIk&@/4Jl 1
To(a) = — — —

a ~2rkL-k–a’

L is large. (49)

this equation together with (16) gives

#i[kL-(T/4)] 1.
F=” _—

2k~2wkL G+’(k)
(50)

—
which is the same as F obtained in the next section.

A substitution of (49) and (50) into the expressions of the

radiated, reflected, and transmitted fields gives the solutions

which can be obtained using the ray theory of diffraction in

conjunction with the modified diffraction coefficient [15 ],

[16], The details of the latter approach are shown in Section

V. However, as To(a) yields the solution using ray theory of

diffraction, the higher order terms of T(a) provide the correc-

tion when (ka)2/kL is not small enough.

V. APPLICATION OF RAY THEORY OF DIFFRACTION

S. W. Lee [15], [16] has introduced a modified diffraction

coefficient for problems involving two or more parallel plates,

which takes care of coupling along a shadow boundary. To

apply the method to the present problem with an excitation of

TEo, t mode and J odd, one utilizes the symmetry of the

geometry with respect to z axis and introduces an infinitely

large magnetic wall at the center of the waveguides, as shown

in Fig. 4(a). The incident field is then a plane wave illumi-

nating the upper edge of the exciting waveguide at an angle

@z, where sin @t= 1~/2ka. The resulting diffracted, reflected,

and transmitted waves, then can be found by an application

of the above modified diffraction coefficient.

A. Diffraction Patterns

Diffraction patterns consist of the diffraction due to the

exciting waveguide alone and the multiple diffractions be-

tween plates 1 and 2, which may be considered separately as

follows.

,JP

& &
‘“ W+, ~

magnetic well
) >~

[.1 (b)

J

P

s’+tefi

m=-

L-_____, J_____+

(c) (d]

Fig. 4. Geometries for the application of the ray theory of diffraction.

1) Diffraction Due to the Open End of the Exciting Wave-

guide [Fig. 4(b)]: The field c#v(p, 0) on the ray diffracted at the

edge of upper plate is given by

ei[kp–(T/4)]

+1(P, e) = — D(P, eiJ)Ev~,
~2rkp

P=?r-e (51)

where

E,i = ~ (– 1) (1-1)/2 (52)

at the upper edge, and 190 is the direction of the incident plane

wave. p and O are the coordinates of the observation point with

respect to the upper edge and the factor ~(~, 60) is the modified

diffraction coefficient in the form

60 -
– 2i Cos ~ Cos :

D(F, !90) = - f(B)f(eo) (53)
Cos 00 + Cos o

with

I

~+(–k COS 8), ;<161<T

f(e) =

1
[i?+(k COS 0)]-1, Iol<: (54)

the function ~+, used in [15] and [16], is related to G+ of the

present paper by

~+(a) = W2(C2 + k) e-i@/4)G+(a). (55)

Thus for I#I(p, O) one obtains

[

ei[kp– (T/4)1 ;

4J1(P, O = — ; (–1)(1-1)/2
d27rkp 1

“[2k sin @l sin O

1G+(k COS r#)JG+(k COS d) . (56)
Cos +1 + Cos o
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Replacing k sin @l by lr/2a and k cos @C=iyz in the above ex- TABLE I

pression, it becomes
Type Inltlal Number of l]~ffract~o,, at Final

;rzei[kP–(ff/4)1
D~ffra.t ,on

@l(P, e) = —

each edge lliffract~on

(– 1) (’-’) /2G+(iyJ
at at

2a~2rkp 1 2
——

G+(k COS 8)

.ksin O -. (57) A
1 n+l n 1

k COS d + iyt
B 1 n n

1’

Note that, for 0< (7/2), the specular reflection at the mag-

netic wall requires the multiplication of the results by a factor

of [1 +ez;~u ‘in ~], which when combined by [~~(k cos ~) ]-1

gives C( –k cos 6). Thus for the range O <~<~ one can use a

single expression ~(~) = G+( — k cos ~) which gives the (57) for

41(P, 0) valid for 0<0 <r.

2) Mult@e Diffraction Between Two Waveguides: There are

two kinds of multiply-diffracted rays as shown in Table I with

the integer n being at least unity. Now consider the fields due

to rays of type

(58)

where ~i is the diffraction field at edge 2 due to the initial dif-

fraction of the incident plane wave at edge 1. ~ is the diffrac-

tion field at edge 1 or 2 with a plane wave of unit amplitude

incident with angle zero at edge 2 or 1, respectively. ~fl is the

diffraction field, at the observation point, due to the final dif-

fraction at edge 1 of an incident plane wave having a unit

amplitude. Equation (58) can be written in the form

where ~{, ~, and ~fl are given by

—Tl
~ (–1) (1-1)/2

ei[k L–(~/4)1 G+(I%)——
~2rkL - G+(k)(iy, – k)

ei[k L–(m/4)1 ei[kL–(n/4)] 1
F=— =======- D(O1 o) = —-- —

~2TkL 2k~2~kL G+’(k)

ei[kp–(9r/4)]

Ffl = —- D(F, o)
~2rkp

—;et [~ P–(lT/4)1 sin O G+(k COS @

= ~2rkp 1–COSO G+(h)
– . (62)

A substitution of (60) and (62) into (59) gives

hd(- 1) (z–l)/’ T
c$2,-4(P, @ = Zatim ei[k’-(””)] —

1–F’

G+(i-YZ). k sin O

“ (iyt – k) G+2(k)
G+(k COS o)

[

~i[~L–(T/4)1 1
.— 1~2rkL - k(l – COS 6) “

Similarly, fields due to rays of type B equal

~ ~<T’’n-’~~,2e”L cm O
n= 1

——
@2,B(p, @ = FiFft & eikL 00’ *

where ~% and ~ are given by (60) and (61) and ~~t is

_ @[k P- (?r/4)] sin 0
Ff, = —

G+(–k COS8)

42.kp l+cose G+(k)

Again a substitution of (60) and (65) into (64) gives

i7rJ(-l) (L-1)/’ 1
42,B(P, 0 =

ei[kp–(m/4)]

2a~2rkl 1–72

G+(iyz). k sin 0

“ (i-y, – k) G+’(k)
G+(–k COS @

[

ei[k L–(m/4)] 1

1_ eik L 00S 0

‘~2rkL k(l + COS 6)

(64)

(65)

(66)

Thus the total diffracted field with distances measu red at

(59) origin x= O and z= O, is given by

@*(P, @ = [c$l(P, @ + 42,.4 (P, 8 + @2,B(P7 d)]ei~” ‘in 0. (67)

B. Fields Inside the Exciting Waveguide

Again, the reflected field consists of the diffraction due to

the exciting waveguide and the multiple diffraction between

(60)
the two waveguides. However, the diffracted rays are now

converted into modes inside the exciting waveguide. The re-

flection due to the open end of exciting waveguide is, Fig. 4(c),

(61)

@,,,(x, z) = ~ [2;(– 1) (~-l)f’]

?n=l,3 ,5...

. Cos ()=x e~”’D[–(7r –c&), –(T – f$t)]

[ray to mode conversion factor]l?u’ (68)

where the first bracket is to normalize the amplitude of the

rays traveling in the — (r —~~) direction at x = d, z = O, for an

incident plane wave of unit amplitude at the above point.

The second bracket is the ray to mode conversion factor given

by [15]

conve~sionfaCtOr = ([~(TC(a))]l)=,COS,

(63) 1
. - (69)

2ka cos &

and Eva is given by (52). Equation (68), after some manipula-

tions becomes

()&,l(x, z) = ~ Rt,~ cos ;-x e~n’ (70)
m=l ,3,5,...with distances measured from edge 1 or
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with

– lx’
Rl,~ = ~ (_ 1) (2+.)/2

wzG+(iyrJG+(iw)
-. (71)

-fm(%ll + 7J

Similarly, the

@r,2,A(%z) =

reflection due to rays of type A is shown as

~ [2;(– 1) @-’)/2] Cos (g %)

7n=l,3 ,6, . . .

[

F __.@nz — FiFf,
~–j72 1

[ray to mode conversion factor] (72)

——
where F, F,, and ~fl are given, respectively, by (61), (60), and

(62) with d being replaced by I& and (e’(’p-*f4)/(ti2~kP)

being dropped in (63). Hence one finds

()&,2,A(% 2) = i R,,?7?(A’ Cos ; x e~m’ (73)
m=l, a,s, . . .

with

—ilrz
Rl,~U) = ~ (_ 1)(2+.)/2

mG+(iyz) G+(iTJ

T*(i-/z – k) G+2(k)

F #[(kL-(T/4))1

. (74)
“ 1 – ~2 <21rkL (k – iyJ

The field due to rays of type B is a radiated field and

has the same form as (66) with cos 0 d. This field can be

converted into a model series to give Rt,m ‘~) (z) similar to

RZ,m(zJ(z). This is due to the fact that the result obtained here

‘is the same as that of (26) obtained by an application of the

saddle-point method of integration in conjunction with the

asymptotic form of T( —a).

C. Fields Inside the Coupled Waweguide

The transmitted fields in the coupled waveguide also con-

sist of diffracted fields due to exciting waveguide and multiple

diffraction between the two waveguides, Fig. 4(d). Here the

diffraction due to exciting waveguide and rays of type A are

scattering type and give transmission coefficients which are a

function of z and can be treated similar to rays of type B in

Section V-B. The remaining contribution comes from rays of

type B which may be shown to be

@,,2,B(z, z) = ~ [2i(– 1) (~-’)fz]
m=l,3!5, . . .

“Cos(ae-’”(z-’)[%l
[ray to mode conversion factor]

which could again be modified to

()+t,2,B(f, Z) = ~ T~,m(B) E* e-?%.
m=l ,3,5,... 2a

(75)

(76)

with

Tt,m@) =
—i17r2

~ (_ 1)(1+.)/2
mG+ (i-y J G+ (iYm) e~~L

~m(~yt – k) G+2(k)(l – T2)

“[–

e;(k L-7r/4)

/2rkL (k – i~J 1. (77)
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Fig. 5. Radiation pattern of the TE O,I mode.
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Fig. 6. Reflection coefficients of the TEo,I mode for dlh = 0.6.

VI. RESULTS AND DISCUSSIONS

Some results are obtained for a waveguide size 2a/A= 0.6

and TEo,l excitation. The resulting infinite integrals are com-

puted by a Gauss–Laguerre quadrature formula with 15 in-

tervals. Fig. 5 shows the radiation patterns for kL = 5, 10, and

50, which are normalized to the maximum power radiation at

kL = 50. Since the radiation patterns are symmetric with re-

spect to the waveguide geometry, only the patterns for

0<0<180° are presented. As expected, with decreasing kL,

the direction of the radiation main lobe moves progressively

away from the forward direction and the back-lobe level in-

creases. The amount of radiated power, however, should be

an oscillating function of kL similar to the reflection and

transmission fields discussed below.

The reflection coefficients for modes 1 and 3 are shown in

~ig. fj, since Rl,m(a) (z) decays with z and does not contribute

to the reflected field at large distances from the opening, its

corresponding terms were not included in computations. The

amplitude and phase of the reflection coefficients are oscillat-

ing functions of period r and decay continuously to reach the

final values for kL = m, a single excited waveguide. Fig. 7

shows the transmission coefficient (coupling to coupled wave-

guide) for the first mode, which is again an oscillating function

decaying to zero as kL approaches infinity. This transmission

coefficient is again computed by neglecting the corresponding

terms for scattered fields which vanish at large distances from

the opening. The total reflection and transmission terms at the

open ends of two waveguides are also computed and are shown
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Fig. 7. Transmission coefficient of the TEo,lmode ford/X =O.6.

MODE MOOE
5 183

a

Fig. 8. Reflected electric field at the center of the open end of the
exciting wavegrride for an exciting TEo, I mode with d/h= O.6.

separately for modes 1, 3, and 5 in Figs. 8 and 9. These results

show the relative magnitude of each mode at the open ends

and may be used to find the resulting aperture fields,

Since similar analytic or eYperim-en~al results were not lo-

cated elsewhere in the literature, no comparison is possible at

the present time. However, the behavior of the results are as

expected. The analysis in this paper was carried out for a

TEo,t excitation with 1 odd. The extension to TEO, i with 1

even and TMO, Z with even or odd 1 is trivial and can be carried

out with the proper Green’s functions. The method can also

01 I , ! , I 1 , I , , ,

481216202428 32 KL

Fig. 9. Electric field at the center of the open end of the couplled
waveguide for an exiciting TEo, I mode with d/k= 0.6.

be extended to waveguides with different widths as well as

coupling between waveguide arrays.
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